Tool may eliminate optical fiber noise, raise speed

SYDNEY – Genome analysis tools may be the key to identifying the causes of noise in the optical cables that are the backbone of the Internet. A

ustralian scientists said they have used the tools to create a patented technology to investigate the fate of the laser beams zapping through the optical fibres that connect cities.

The breakthrough makes use of a device that has been created by National Information and Communications Technology Australia (NICTA) engineers for a few thousand dollars.

It can do a job that today would cost A$100,000 plus, and require a broad range of different test equipment. Moreover, it will allow phone companies to confidently increase the speed ratings on long haul optical fibres – from 10 gigabits per second to 40 gigabits per second or more without losing data in the noise in line.

NICTA principal researcher Trevor Anderson, who is based at the Victorian lab and directs the Managing and Monitoring the Internet Project (MAMI), said the team has developed a way of presenting an optical signal as a two-dimensional image. “We thought that it would allow us to recognize the ‘fingerprint’ of the various kinds of optical noise that can interfere with the signal,” he said.

“But we didn’t know how to analyze the image. Fortunately in the next door laboratory NICTA has a team of geneticists analyzing vast lengths of genetic code to find patterns of gene sequences that would indicate a tumor.

“Dr. Adam Kowalczyk looked at our problem and laughed.” Kowalczyk thought the problem was easy, adding that “biology is so much more complex.”

He told Anderson: “We have to identify cancer subtypes using a handful of noisy examples to learn from rather than the thousands that are available to you.”

As a result Dr Kowalczyk said “let’s try our algorithms on your data.”

Anderson said the result is a new device known as a multi-impairment monitor. And it can identify the distinct visual patterns created by the common forms of noise and distortion in optical fibres.

The six most common sources of impairments are: optical amplifier noise; too much dispersion as the laser beam travels down the fibre; a fibre that’s not quite symmetric – leading to more dispersion of the signal; power levels that are too high; interference from adjacent channels and; unwanted reflections.

“The current tools available in the marketplace only count the errors in the data, telling the operator a problem exists but not what that problem is, where the problem is or what caused it,” Anderson said.

“Our device can already identify the top four sources of noise and we expect to be able to do all six.” He anticipates the device will be ready for market in 12 months.

“In the long-term we hope it will be small enough and cheap enough to be embedded throughout long haul networks,” Anderson said. “Patents have been lodged for the technology in the new device and telecommunications companies are lining up to discuss the potential.”

It’s a second major win for the NICTA team. Another device – an optical signal-to-noise ratio (OSNR) monitor – has already been licensed to an industry partner, Optium.

It can distinguish and measure the impairment caused by optical amplifier noise, improving the ability to manage the network.

“We expect the information provided by the monitor could save telecommunications carriers the time and expense that is currently required to deploy a truck and technicians to fix a problem on a network and to provision new services,” he added.

Anderson said the technology matters because of the increased demand on optical fibres with YouTube, video on demand and Facebook.

“Everyone wants to send more and larger files and data streams through the Web,” he said. “But laying new fibres is expensive. So the phone companies are using new technologies to push more information through the fibre.

“Fibres which were originally carrying 10 gigabits per second are now carrying 40 gigabits per second or more. And they’re being automatically reconfigured to automatically switch channels between fibres.

“NICTA’s tools will allow phone companies to carry out advanced tests in the field which otherwise could only be conducted in the laboratory.”

Anderson said companies are lining up to participate in the field trials – which will be focused on long-haul landlines like the Sydney-Melbourne cable.

Would you recommend this article?


Thanks for taking the time to let us know what you think of this article!
We'd love to hear your opinion about this or any other story you read in our publication.

Jim Love, Chief Content Officer, IT World Canada

Featured Download

Related Tech News

Our experienced team of journalists and bloggers bring you engaging in-depth interviews, videos and content targeted to IT professionals and line-of-business executives.

Featured Reads