
1 Avoid disposable development with the 5—ities

SOFTWARE DEVELOPMENT SUCCESS

Avoid disposable development
with the 5—ities:
Successful software development requires a focus on the
non-functional features

By Rodney Gi l l , D i rector o f Pro ject De l ivery, Aff in i ty Systems

Outsourcing software development creates effi ciencies, allowing a focus on core

competencies and fostering innovation. Too often, though, missteps around the choice

of outsourcing vendor—sometimes, but not always geographic—will result in broken or

unrealized projects.

Rebounding from IT project failure takes a tremendous toll; the wrong failure—a

mission-critical application or system—at the wrong time can spell the end for a business.

Typically outsourced software projects don’t fail because established criteria and

specifi cations are not being met by the developer, but rather because unspoken-but-crucial

features are overlooked due to inexperience or to cut costs. Investing in and specifying these

crucial non-functional features or “-ities”—usability, maintainability, scalability, security and

reliability—differentiates the software triumphs from fl ops.

Examples abound in which the absence of one or more –ities have had devastating results.

Short-term projects and one-off applications may not need to incorporate all fi ve – ities, but

long-term, sustainable projects must incorporate many. Doing so demands proactivity and

answering numerous, in-depth questions of the developers.

2 Avoid disposable development with the 5—ities

SOFTWARE DEVELOPMENT SUCCESS

USABILITY:

An application is only a success if intended users—whether employees, customers or

prospects—actually use it. Usability is not simply an attractive appearance, although

aesthetics play a part. It requires an understanding of users’ roles and activities in the context

of project goals.

Consider also accessibility for people with disabilities, increasingly important and mandated in

some jurisdictions over the next decade. Add to that accessibility by the plethora of different

devices and clients available on the market.

Usability-challenged applications often have great functional features that users cannot fi nd (or

be bothered to fi nd), rendering them useless.

Questions to ask: Is the developer involving users throughout analysis, design and testing

phases? Does the developer have access to people with the educational background—such

as psychology, design, computer science, information science—to perform all UX (user

experience) activities?

MAINTAINABILITY:

An application meant to last must be maintainable. This requires proactive consideration

of, and designing for, future functionality. With the pace of innovation and the nature of the

Internet, forthcoming features cannot always be anticipated, so the software should be

designed to adapt.

The alternative is for major innovations to demand a forklift upgrade to the whole system

or starting over from scratch. Knowledge transfer is of utmost importance to mitigate risks

around changing external vendors.

Maintainability-challenged projects can overlook the simplest of future changes, because

the business and developers didn’t see them as important at the time. For example, cycles

3 Avoid disposable development with the 5—ities

SOFTWARE DEVELOPMENT SUCCESS

wasted when it takes a 48-hour overhaul to change copyright notices on a website.

Questions to ask: Does the development vendor have a plan to continuously transfer

knowledge through the life of the project? Can the vendor demonstrate that their development

practices simplify maintenance, enhancement and troubleshooting? Will they commit to

following your coding and development standards and have their software audited throughout

the project?

SCALABILITY:

Designing for scalability always comes with a cost, but as the adage goes: a stitch in time

saves nine. Investments made to ensure scalability prevent much higher future costs. The

cloud is not the panacea for scalability that some believe, since software not designed to

scale still cause costs to skyrocket alongside performance demands.

To support scalability an application must be designed to scale and key performance

indicators must be measureable throughout the development and deployment. Performance

tests, load tests and stress tests should determine not just when a solution breaks, but how

gracefully it fails.

Without software designed from the ground up to scale in the best case scenario expensive

hardware must be purchased to solve impending scalability issues. In worst-case scenarios

systems, systems break under the pressure—just when businesses need them most.

Questions to ask: Does the developer’s proposed solution accommodate the highest

possible growth pattern? Can they demonstrate the scaling features of the solution during

development? Do they evaluate performance targets throughout the development lifecycle? Is

the solution instrumented so performance can be easily measured?

SECURITY:

Security must be considered at every phase of development, not as an afterthought just

4 Avoid disposable development with the 5—ities

SOFTWARE DEVELOPMENT SUCCESS

before deployment. It must be spelled out during the requirement phase, and security use

cases—and abuse cases—must be developed.

At the design phase, the framework and architecture should be built with security in mind.

What actual code is to be trusted, what needs further scrutiny? The solution’s security must

be lab-tested and auditable. Security-hardened software should introduce trust boundaries

between other technology components, and must also take into account human error and the

prospect of internal breaches.

One needs to look no further than the front pages of news sites and newspapers to see

the devastating impact security-challenged software solutions have on major retailers,

governments and service companies.

Questions to ask: Have security details been specifi ed in the requirement phase and carefully

considered in the design phase? Is there one clearly defi ned person with oversight that is

responsible and accountable for security?

RELIABILITY:

Not just how well the application runs but, if something does go wrong, reliability represents

the grace with which it degrades and how well does it recovers? Like scalability there is

cost associated with the redundancy required for reliability but, again, this up-front expense

prevents future loss associated with downtime and lost business.

Uptime expectations must be incorporated into reliability decisions—the application may

or may not need to run 24/7—and its environment. Software makes assumptions about

the environment on which it runs; if one element fails, does the entire solution go down?

Counteract this by developing solutions with independent software components.

Not all failures result from technology, the worker tripping over a cord must be considered, as

well as how the system reacts and recovers from such human error.

5 Avoid disposable development with the 5—ities

SOFTWARE DEVELOPMENT SUCCESS

Questions to ask: Are availability and fault tolerance measures specifi ed during the

requirements phase? Is failover testing and stress testing performed continuously during the

project lifecycle in order to refi ne graceful degradation and recovery?

Like any project, balance must be found between the –ities and associated costs, but many,

such as security, do not cost more when incorporated up front. Others need to be looked at

from the perspectives of mitigating risk and creating operational effi ciencies.

Just think of the staggering cost of the days, or sometimes weeks, of downtime caused by

solutions that lack reliability or scalability, the expense of starting again from scratch every

time a new innovation reaches the market, or the waste of a fi ne application that customers or

employees don’t take to. Covering off the fi ve “-ities” makes sure those don’t happen.

ABOUT AFFINITY SYSTEMS

For 25 years, Affi nity Systems has been building world-class custom software

solutions. Affi nity combines broad industry experience with deep technical knowledge

to deliver unrivaled and insightful solutions that exceed expectations. Affi nity has

an extensive record of tackling complex software challenges from design and

development through implementation and support. As a Microsoft and Kx Systems

partner, Affi nity’s thoughtful and systematic approach to custom software solutions,

business intelligence, big data, and software quality assurance has established it as an

industry leader. For more information, visit www.affsys.com

